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CONS P EC TU S

B ecause a variety of human-related activities, engineer-
ed nanoparticles (ENMs) may be released to various

environmental media and may cross environmental bound-
aries, and thus will be found in most media. Therefore, the
potential environmental impacts of ENMs must be assessed
from a multimedia perspective and with an integrated risk
management approach that considers rapid developments
and increasing use of new nanomaterials.

Accordingly, this Account presents a rational process for
the integration of in silico ENM toxicity and fate and
transport analyses for environmental impact assessment.
This approach requires knowledge of ENM toxicity and
environmental exposure concentrations. Considering the
large number of current different types of ENMs and that those numbers are likely to increase, there is an urgent need to
accelerate the evaluation of their toxicity and the assessment of their potential distribution in the environment.

Developments in high throughput screening (HTS) are now enabling the rapid generation of large data sets for
ENM toxicity assessment. However, these analyses require the establishment of reliable toxicity metrics, especially when
HTS includes data from multiple assays, cell lines, or organisms. Establishing toxicity metrics with HTS data requires
advanced data processing techniques in order to clearly identify significant biological effects associated with exposure
to ENMs.

HTS data can form the basis for developing and validating in silico toxicity models (e.g., quantitative structure�activity relationships)
and for generating data-driven hypotheses to aid in establishing and/or validating possible toxicity mechanisms. To correlate the
toxicity of ENMs with their physicochemical properties, researchers will need to develop quantitative structure�activity
relationships for nanomaterials (i.e., nano-SARs). However, as nano-SARs are applied in regulatory applications, researchers
must consider their applicability and the acceptance level of false positive relative to false negative predictions and the reliability of
toxicity data.

To establish the environmental impact of ENMs identified as toxic, researchers will need to estimate the potential level
of environmental exposure concentration of ENMs in the various media such as air, water, soil, and vegetation. When
environmental monitoring data are not available, models of ENMs fate and transport (at various levels of complexity) serve
as alternative approaches for estimating exposure concentrations. Risk management decisions regarding the manufactur-
ing, use, and environmental regulations of ENMs would clearly benefit from both the assessment of potential ENMs
exposure concentrations and suitable toxicity metrics. The decision process should consider the totality of available
information: quantitative and qualitative data and the analysis of nanomaterials toxicity, and fate and transport behavior in
the environment.

Effective decision-making to address the potential impacts of nanomaterials will require considerations of the relevant
environmental, ecological, technological, economic, and sociopolitical factors affecting the complete lifecycle of nanomaterials,
while accounting for data and modeling uncertainties. Accordingly, researchers will need to establish standardized data
management and analysis tools through nanoinformatics as a basis for the development of rational decision tools.
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1. Introduction
Engineered nanomaterials (ENMs) which may be released to

the environment as the result of a variety of human-related

activities (air emissions and/or direct discharge to surface

water, etc.) move across environmental boundaries and are

therefore likely to be found in most media.1 In order to

appropriately assess the potential environmental impact of

ENMs, it is imperative to evaluate existing and potential

releases of ENMs to various environmental media. Such in-

formation is essential for estimating the expected concentra-

tion levels of ENMs in the environment and thus a possible

level of exposures of ecological receptors to ENMs viamultiple

exposure pathways.

In order to evaluate the potential environmental impact

of ENMs, one must then assess the expected levels of

environmental concentrations at the exposure locations.2

Such information can be provided via field monitoring or

modeling of the fate of transport of ENMs in the environ-

ment. Environmental field monitoring of the concentra-

tions of ENMs would clearly be valuable; however, this is a

daunting and costly endeavor that would be impractical for

the increasing number of ENMs. In this regard, estimation

methods such as those based on life-cycle analysis of ENMs3

can inform decisionmakers as to the potential environmen-

tal releases of ENMs during their manufacturing, use, and

product disposal. Estimates of the potential environmental

concentrations of ENMs as a result of various release scenar-

ios could then be evaluated based on suitable fate and

transport models that consider the environmental distribu-

tion of ENMs in the various environmental media (e.g., air,

soil, water, sediment, and vegetation). Such information can

serve to evaluate the possible exposures of ecological

receptors to ENMs via multiple exposure pathways.

Risk characterization requires quantitative dose�response

relationships for the target receptors and/or acceptable

extrapolation from the test species.4 In the absence of such

information, alternative conservative approaches can be

undertaken where acceptable dose (or dose below which

there is no observed hazardous effect) can be established.4

Such metrics can also be used, as in the case of quantitative

risk assessment, to arrive at protectivemeasures to establish

allowable environmental concentrations. In some cases, it

may only be possible to assert whether or not a given ENM

may be potentially hazardous based on certain toxicity me-

trics, but without reliable concentration threshold. Although

the quality of such information is below that of quantitative

dose�response relations, it can be useful for making more

informed decisions regarding the safe design, use, and dis-

posal of ENMs.

The risk assessment process may contain various explicit

and implicit assumptions given the quality and availability

of data for various components of such analysis.5 Clearly, it

is desired to have convincing experimental data to establish

if specific ENMs may be hazardous and if so to establish

quantitative dose�response relationships (Figure 1). How-

ever, it must be recognized that, given the rapid develop-

ments in nanotechnology6 and thus additions of many

FIGURE 1. Schematic illustration of the components for environmental impact assessment associated with exposure to nanomaterials. (HT Exp.:
High-Throughput Experiment; LT Exp.: Low-Throughput Experiment; nano-SAR: nanostructure�activity relationship).
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different types of ENMs, there is also a need for hazard

identification, establishing and correlating ENMs potential

toxicity metrics with ENM properties and estimating the

range of possible ENM exposure concentrations (Figure 1).

In this regard, when experimental and field data are un-

available, in silico toxicity predictions7 and models of ENMs

fate and transport8 are alternative approaches to arriving at

the needed information for environmental impact assess-

ment, the collective approach requiring ENM data manage-

ments and model building which are the focus of the

emerging field of nanoinformatics.

2. Nanoparticle Hazard Identification
Characterization of the environmental hazard related to

exposure to ENMs requires evaluation of adverse effects at

multiple scales, ranging frommolecular level (e.g., gene and

protein expression) to ecosystem impacts that need to be

assessed via in vitro, in vivo, and mesocosm studies for

comprehensive hazard identification. At present, however,

data scarcity and uncertainty are impediments to unambig-

uous ENMs hazard identification.9 At the same time, given

the rapid growth of nanotechnology in terms of the volume

and different types of ENMs, there is a need for accelerated

approaches to toxicity screening. In this regard, the combi-

nation of technologies for assay miniaturization (e.g., 384/

1536 well plates) using single cell lines and simple organ-

isms (e.g., zebrafish10), laboratory automation and robotic

equipment enables high throughput screening (HTS11) test-

ing of nanoparticles toxicity in biological systems. Indeed, in

recent years, multiparametric assays involvingmultiple con-

centrations, exposure times, target cell lines, and toxicity end

points have emerged as suitable platforms for rapid nano-

toxicity screening via HTS toxicity studies.12 HTS data can

be invaluable for developing and validating in silico data-

driven toxicity models (e.g., quantitative structure�activity

relations) and for generating data-driven hypothesis regard-

ing possible toxicity mechanisms. However, the use of HTS

assays for hazard identification requires advanced data

processing techniques in order to clearly identify significant

biological effects associated with exposure to ENMs.

2.1. Processing of High-Throughput Nanotoxicity Data

Sets. Data-driven techniques for knowledge extraction and

toxicity model development require high quality data. How-

ever, rapid screening techniques such as HTS assays are

vulnerable to systematic and random errors.13 For instance,

variations in liquid dispensing, cell growth variability, or

fluctuations in nanoparticle concentration due to solvent

evaporation can introduce significant levels of noise in

HTS data.14 The use of replicate measurements and pro-

cedural quality controls to reduce assay variability can,

partially, compensate for random errors.15 Systematic

errors induced by across-plate and within-plate row and

column biases are much more difficult to manage and

require within plate reference controls.15 Indeed, the use

of control wells (e.g., cells not exposed to nanoparticles) is

essential for assessing plate-to-plate variability in multiplate

assays and for establishing proper assay background

levels.15 In this regard, normalization of raw HTS data, using

control information, is required to remove systematic plate-

to-plate variability and define toxicity metrics of the same

statistically meaning so as to compare experimental mea-

surements across plates. Also, data outliers must be identi-

fied and removed before HTS data normalization using

acceptable statistical techniques such as the boxplotmethod

or more sophisticated analysis.16 HTS data normalization

should, whenever feasible, be accomplished with clear

interpretation of statistical parameters such as has been

recently shown employing the strictly standardized mean

difference (SSMD15). The SSMD can be used to quantify the

statistical significance of the differences in the replicates of

responses of exposed cells relative to the unexposed cell

population. The SSMD, unlike other commonly used statis-

tical measures such as Student's t test, accounts for intrin-

sic data variability without underestimating the likelihood

of population similarity (i.e., lower p-values) with increasing

sample size. A detailed discussion of additional statis-

tical methods for HTS data preprocessing can be found

elsewhere.17

Following HTS data normalization, hit-identification

methods17 can be applied to detect significant biological

responses induced by nanomaterials. In such analysis, one

must carefully control false-positive and false-negative iden-

tifications as it is crucial to ensure the data quality, which in

turn is fundamental for the development of reliable models.

False negative identifications (i.e., nanoparticles that induce

adverse effects identified as no-effect nanoparticles) have

significant implications in nanotoxicology and regulatory

decision-making. A common practice to minimize false

identifications is to apply predefined activity threshold levels

to discriminate between nanoparticles that that lead to

active (hits) and nonactive (non-hits) biological response.

This approach tends to detect highly active nanoparticles

as hits whereas lower activity nanoparticles, close to the

threshold level, can then have a higher probability of being

missed due to measurement errors.13 Different methods

have been proposed in the literature to address this critical
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issue including theuse of local thresholds basedon similarity

clustering.18 It is noted that the use of SSMD for data normal-

ization facilitates control of the false negative level during

the hit-identification process and thus allows the definition

of statistically significant thresholds.19

Screening of nanoparticle toxicity can be carried out over

a broad domain of nanoparticle characteristics (e.g., size,

surface charge, shape, and aggregation state), environmen-

tal parameters (pH, temperature, salinity, solution chemistry),

and assay conditions (concentrations, exposure time, cell

lines, measured response). However, due to the lack of a

priori quantitative models of nanotoxicity, the challenge is

to determine if the generated data sets span an adequate

range (magnitude) of the selected nanoparticles types and

properties, as well as environmental conditions. In this

regard, feature selection20 algorithms help reduce the re-

quired dimension of the nanoparticle data sets by keeping

only information that is truly relevant for hazard identifica-

tion. Feature selection analysis can assist in determining if

experimental parameters span a range that is too narrow for

extracting useful information.20 A major benefit of using

feature selection in HTS data analysis is in data and model

complexity reduction.

Clearly, the definition of meaningful nanotoxicity metrics

based on HTS processed data is of paramount importance

for in silico hazard identification. For example, the definition

of metrics that are based on averaged cell responses across

multiple assay conditions must consider possible cancella-

tion effects due to the coexistence of positive (e.g., up-

regulated) and negative (e.g., down-regulated) values. In a

similarway, cytotoxicity endpoints should be defined on the

basis of irreversible biological effects (e.g., cell membrane

damage). Accordingly, use of the proper toxicity metrics

(based on suitable end point definition) will be fundamental

for the interpretability of subsequent nanotoxicity models.

2.2. Knowledge Extraction from High-Throughput

Screening Data. Data mining techniques21 can be applied

during exploratory analysis of HTS data to extract informa-

tion for hypothesis formulation of possible toxicity mechan-

isms and relationship among different cell responses, and

relevance of environmental conditions and ENMs proper-

ties. At the basic level of analysis, heat maps combined with

hierarchical clustering are most commonly used for high-

throughput data exploration. Heat maps provide, via row

and/or column clustering, ordered representations of data

that facilitate identification of similarity patterns. For

instance, hierarchical clustering analysis applied to in vitro

HTS data identified nanomaterials with similar patterns

of biologic activity across a broad sampling of cellular

contexts.22 More comprehensive visualizations can be ob-

tained via topology preserving mapping techniques such as

the self-organizing map (SOM23). Briefly, SOM provides an

ordered 2D projection of data vectors, which for the case of

HTS analysis contain the cell response information. These

2D projections form cell lattices such that distances among

cells are preserved in relation to the similarity of elements of

the original HTS data set.23 Such topology preservation

allows, for example, clustering of nanoparticles of similar

behavior on neighboring regions of the 2D map and facil-

itates the identification and visualization of groups of nano-

particles that trigger similar biological responses. Layers of

SOM maps then form component planes that contain addi-

tional ordered representations of the detailed information

(e.g., specific cell responses) over the SOM space (i.e.,

mapped unit cells).

Clusters of similar nanoparticles identified either using

heatmaps or SOM need to be validated to ensure their

significance. Cluster validation is challenging for HTS data

since (a) lack of prior knowledge about the expected cluster

structure, and (b) clustering of a data set of high dimension-

ality is sensitive to data quality (e.g., both in terms of data set

size and data uncertainty). Techniques based on statistical

sampling such as consensus clustering24 should be used to

quantify the quality (e.g., validity and stability) of the clusters.

The use of validated SOM analysis for knowledge extraction

from HTS was recently demonstrated for cell signaling path-

ways related to nanotoxicity.25 SOM analysis identified

groups of nanoparticles that induced similar effects on the

regulation of signaling pathways in RAW264.7macrophage

cells. For example, the analysis revealed that exposure to

high concentrations (>20 mg 3 L
�1) of ZnO and Pt nanopar-

ticles induced a significant up-regulation of pathways re-

lated to DNA damage.

SOManalysis can also be applied to integrated analysis of

nanoparticle biological activity profiles encompassingmulti-

ple assay conditions, cell types, and cell responses. Figure 2

demonstrates the application of SOM analysis to an HTS

data set that includes activity of 10 cell signaling pathways

and 4 cytotoxicity responses for RAW264.7 macrophages

and BEAS-2B epithelial cells exposed to 6 metal and metal

oxide nanoparticles.12,25 A complete description of the HTS

assays including details of the experimental protocols and

data preprocessing can be found elsewhere.12 Briefly, the

SOM provides a compact data visualization and facilitates

identification and interpretation of similarities of biological

response profiles (i.e., clusters). Cluster I identifies similarities
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between the activity of p53, Myc, E2F, and SMAD signaling

pathways with cell membrane damage (PI) and oxidative

stress responses (ROS) after long time exposure (12�24 h) of

macrophage cells to nanomaterials. The projection of HTS

data onto the SOM (component planes) identifies ZnO,

Pt, and SiO2 at high concentrations as the nanoparticles

responsible for triggering the above cellular activity. Further

analysis of component planes shows that ZnO pro-

duces a significant down-regulation of multiple signaling

pathways in both RAW264.7 and BEAS-2B cell lines

(cluster III). The results presented in Figure 2 highlight

the use of SOM as a computational and visualization

tool for knowledge extraction from high-dimensional

HTS data sets and as a tool for in silico hazard screening

and identification.

2.3. In Silico Nanotoxicity Models and Nanotoxicity

Metrics. The development of structure�activity relation-

ships for nanomaterials (nano-SARs) is regarded as being

essential for the implementation of ENMhazard ranking and

regulatory decision-making.26 Nano-SAR development fol-

lows a data-driven approach that requires sufficiently large

data repositories of reasonable diversity (e.g., with respect to

the heterogeneity of nanoparticles and biological receptors)

and suitable nanoparticle descriptors (i.e., physicochemical

and structural properties of nanoparticles, environmental

conditions such as particle concentrations and solution

properties). Ideally, the development of nano-SARs should

be integrated with the experimental design of ENMs toxicity

studies to ensure that generated data span the desired

application domain as discussed in sections 2.1 and 2.2.

Also, the generation of detailed structure and chemical

descriptors of nanoparticles may demand computational

modeling (e.g., quantum mechanics, molecular dynamics,

and Monte Carlo methods) at a molecular level.27 Such an

endeavor could require extensive computational effort and

resources depending on the complexity of the ENM struc-

ture. However, the preferred practical approach28 is to utilize

a small set of fundamental nanoparticle descriptors, espe-

cially given the yet-limited nanoparticle characterization

and toxicity databases5a,28b relative to the chemical world.

Moreover, the development of nano-SARsmust ensure high

data quality when characterizing biological end points, and

FIGURE 2. SOM clusters of biological responses of RAW264.7 (black labels) and BEAS-2B (red labels) cells exposed to six metal and metal oxide
nanoparticles at different doses in the range of 0.375�200 ppm and after different exposure times (1�24 h). (Left) Clusters of signaling pathway
activity and cytotoxicity effects (white background). (Right) SOM projection of activity profiles at different concentrations for each nanoparticle. Blue
color indicates down-regulation/low activity, whereas red color indicates up-regulation/high activity.
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concepts such as reliability, variability, and uncertainty

management must be considered.29 Overall, nano-SAR de-

velopment should follow acceptable guidelines such as

those previously established for chemical structure�activity

relationships.28a

To date, the few nano-SARs have been published

(Table 1), based on relatively small data sets have focused

on primarilymetal andmetal oxide nanoparticles. Themajority

of models included information related to the size (e.g.,

primary and aggregate sizes) and fundamental nano-

particle properties (e.g., zeta potential, magnetic pro-

perties) and fundamental molecular descriptors. This is

consistentwith recentwork30 that recognized the importance

of including particle size information in nano-SAR models to

distinguish between nanoscale effects and bulk properties.

The definition of toxicological end points plays a key role

in nano-SARs development. Given the uncertainties and

variability in high-throughput assays, it is difficult and often

impractical to develop quantitative toxicity end points

from HTS data that are both meaningful (for regulatory use)

and accurate. Therefore, toxicological end points (ormetrics)

that can be correlated with ENM descriptors using classifier

based nano-SARs are alternative screening tools for identi-

fication of active nanoparticles (with respect to toxicity) for

subsequent detailed toxicity and/or in support of regulatory

actions. Following this approach, a nano-SAR classifier28b for

cytotoxicity of metal oxide nanoparticles was recently de-

veloped for transformed bronchial epithelial cells (BEAS-2B),

making use of a logistic regressionmodel. This simple nano-

SAR demonstrated that the metal-oxide energy of atomiza-

tion, period of the metal, and the nanoparticle primary size

and volume fraction were suitable parameters for identify-

ing the propensity of the nanoparticles to damage the cell

membrane.

When data uncertainty levels are significant, it is impor-

tant to control the nano-SAR misclassification of ENMs

as being either toxic when they are not (false positive) or

as nontoxic when they are actually toxic (false negative). In

the regulatory context, false negatives should be avoided to

ensure that correct decisions are reached with respect to

environmental and human health protection. In order to

address this issue, penalty (or cost) functions can be intro-

duced (in the nano-SAR development stage) to weight nano-

SAR predictions according to predefined acceptance level of

false negatives relative to false positives. This approach is

demonstrated in Figure 3 using available literature data33

for EC50 toxicity to E. coli for a set of 16 metal oxide nano-

particles with primary sizes in the range of 15�90 nm.T
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The analysis proceeds by first dividing the nanoparticles into

two categories (significant effect (SE) and insignificant effect

(IE)) according toapredefined EC50 threshold (e.g., log(1/EC50)g

3 identifies ENMhaving a significant effect on E. coli). A nano-

SAR, based on a logistic regression model, was then devel-

oped for classifying the metal oxides nanoparticles as

having either significant effect (SE) or insignificant effect (IE)

using two quantum chemical energy descriptors (energy

of the lowest unoccupied molecular orbital (LUMO) and

enthalpy of formation of a gaseous cation (ΔHMeþ)).
33 The

results as shown in Figure 3 depict a decision boundary (in

yellow) that separates the two categories (SE and IE)

(with equal acceptance level of false negative and false

positive). In this example, the nano-SAR model yields a

false positive classification of Y2O3 andmisclassifies V2O3

as having insignificant effect. Upon introducing a penalty

function or an acceptance level of 7:1 (i.e., false negatives

have a penalty (LFN) of classification 7 times greater than

for false positives (LFP)) produces a more conservative

nano-SAR with zero false negatives at the expenses of

adding Bi2O3 as another false positive. The above exam-

ple illustrates that the use of nano-SARs for regulatory

applications could benefit from considerations of the level

of acceptance of false positives together with the relia-

bility of toxicity data.

3. Environmental Impact Assessment
Environmental impact assessment requires identification

and acceptance criteria of potential risk or hazard ranking.

The analysis should include the various factors discussed

in sections 1 and 2, such as production volume, emission

rates and modes of release, likely concentrations in the

various environmental media, exposure pathways, toxicity

data (e.g., dose�response), ENMs’ physicochemical proper-

ties, possible environmental transformations, as well as the

multimedia distribution of ENMs that govern exposures

(Figure 4).
Prospects for quantitative risk assessment of nanomate-

rials are plagued by a general lack of environmental con-

centrations, exposure, and toxicity data.34 At the same time,

the number of commercially produced ENMs could increase

from the current 103 different nanomaterials to an order of

105 within a decade.34 Clearly, applying conventional risk

assessment techniques used for chemicals to nanomaterials

would be a formidable task given the lack of environmental

monitoring data. Therefore, risk assessment for nanomate-

rials requires carefully crafted strategies that optimally use

the available information to guide the decision-making

process.35 For example, cause and effect relationships in-

volving multiple interdependent ranking criteria can be

modeled using Bayesian networks.36 The use of a Bayesian

network is particularly useful since this network encodes, as

a joint probability distribution, the domain knowledge

(either given explicitly by an expert or extracted from data)

of interdependency relationships between variables. In the

decision-making problem one strives to recommend the

alternative that maximizes the expected objective given

the observation of a set of external factors and preferences

of the decision maker.
Irrespective of the complexity of establishing toxicity

metrics and exposure assessment, one is likely to be con-

fronted with significant fuzzy information (i.e., qualitative or

quantitative but of various levels of uncertainty). Therefore,

uncertainties should be considered in various paths of the

analysis process. The premise of such an approach is that a

given ENMs would be of environmental concern if it is

hazardous and there is exposure to the receptors of concern

at concentration levels that may induce an adverse effect.

Accordingly, in order to determine if a given ENM should be

of environmental concern, one can proceed with an initial

screening to first evaluate exposure likelihood and subse-

quently (or in parallel) the potential hazard associated

with the ENM, followed by detailed environmental impact

analysis as may be suggested by the initial screening.

FIGURE 3. Probability map of nanoparticle (X) having significant effect
(P(SE|X)) versus having insignificant effect (P(IE|X)) (i.e., P(SE|X) versus
P(IE|X)). The log ratio of the two probabilities is correlated with two ENM
descriptors via a simple nano-SAR: ln(P(SE|X)/P(IE|X)) =�0.1882LUMO�
0.0087ΔHMeþ þ 7.834. The curves illustrate two decision boundaries
corresponding to different acceptance levels of false negative relative to
false positive (expressed via the ratio LFN:LFP).
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An example of a possible decision analysis process is de-

picted in Figure 5. The question to be asked iswhether or not

there is likelihood for exposure (step 2) to the specified ENM

and if it is hazardous (step 3). Screening assessment should

consider the environmentally relevant exposure period and

potential environmental ENM release during production,

use or disposal. If the ENM is also deemed to be potentially

hazardous at the screening stage (e.g., based on available

information), then decision makers could opt to assert their

authority to make early judgment regarding the potential

safety of such a material (proceed from step 3 to step 8 in

Figure 5) or request analysis that follows steps 4�8. Hazard

identification (step 4) may include experimental toxicity

studies (in vivo/in vitro) and/or toxicity modeling (in silico).

Subsequently, step 5 serves to determine if there is indeed

ENM exposure for the expected exposure scenarios. Subse-

quently, the severity of the identified hazards can be ranked

(step 6), based on the collection of quantitative and qualita-

tive information, while considering the uncertainties in the

various analysis steps (step 7). The outcome of the analysis

FIGURE 5. Example of sequential steps in assessing the environmental impact of nanomaterials.

FIGURE 4. Major intermedia transport processes in a multimedia environment.



810 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 802–812 ’ 2013 ’ Vol. 46, No. 3

Nanomaterials Hazard and Risk Cohen et al.

(whether in the formof relative ranking of exposures among

analyzed ENMs, risk of adverse outcomes, or level of ex-

posures above an acceptable threshold) can then be used by

regulators to address the question “Is this ENMsafe?” (step 8).

It is acknowledged that decisions regarding environmental

risk management (step 9) may need to be made even when

faced with partial information. Therefore, the final risk

management decision (step 9) should consider uncertainties

of exposure and risk (steps 6 and 7). The outcome may

include ranking following established criteria based, for

example, onmethods such as multicriteria decision analysis

(MCDA37).MCDAmethods utilize a decisionmatrix of criteria

and performance scores to provide a systematic analytical

approach, which enables evaluation and ranking of alter-

natives. To generate rankings, each criterion requires

weights that in many practical applications may be difficult

to assign. In this regard, the application of MCDA would

allow for uncertainty quantification,38 enabling statements

about the likelihood of miss-rankings.

4. Nanoinformatics
Given the need for integrated information sources and In

Silico tools (e.g., nano-SARs and ENM transport and fate

models) for the analysis of nanomaterials hazard and risk,

the nanoinformatics field has emergedover the past fewyears

as “The science and practice of determining which information is

relevant to the nanoscale science and engineering community, and

then developing and implementing effective mechanisms for col-

lecting, validating, storing, sharing, analyzing, modeling, and ap-

plying that information.”39Akey challenge innanoinformatics is

in establishing interoperability of data repositories contain-

ing heterogeneous data sets (Figure 6), common vocabulary

(i.e., ontology) to unambiguously describe nanoparticles,40

standard formats for data exchange (e.g., ISA-TAB Nano

specification;41 NCBO;42 NBI43), definition of the minimum

set nanomaterial characterization parameters (e.g., MINChar44),

and ENM databases and related information portals (e.g., EU

nanoHUB;45 NCI caNanoLab;46 CEIN NDR47).

5. Concluding Remarks
Effective decision-making to address the potential impact of

nanomaterials will require an integrated analysis platform

that considers the relevant environmental, ecological, tech-

nological, economic, and sociopolitical factors affecting the

complete lifecycle of nanomaterials. Generating the neces-

sary scientific data and knowledge pertaining to the toxicity

of nanomaterials and their transport and fate behavior in the

environment is paramount to conducting environmental im-

pact assessments. However, it must be recognized that hetero-

geneous information with respect to human aspirations and

technical applications of ENMS demand a systematic and

coherent framework to organize people, data, processes, and

tools for making structured and defensible decisions.
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